Explicit formulas for five-term recurrence coefficients of orthogonal trigonometric polynomials of semi-integer degree
نویسندگان
چکیده
Orthogonal systems of trigonometric polynomials of semi-integer degree with respect to a weight function w(x) on [0, 2π) have been considered firstly by Turetzkii in [Uchenye Zapiski, Vypusk 1(149) (1959), 31–55, (translation in English in East J. Approx. 11 (2005) 337–359)]. It is proved that such orthogonal trigonometric polynomials of semi-integer degree satisfy five-term recurrence relation. In this paper we present explicit formulas for five-term recurrence coefficients for some weight functions.
منابع مشابه
Trigonometric Multiple Orthogonal Polynomials of Semi-integer Degree and the Corresponding Quadrature Formulas
Abstract. An optimal set of quadrature formulas with an odd number of nodes for trigonometric polynomials in Borges’ sense [Numer. Math. 67 (1994), 271–288], as well as trigonometric multiple orthogonal polynomials of semi-integer degree are defined and studied. The main properties of such a kind of orthogonality are proved. Also, an optimal set of quadrature rules is characterized by trigonome...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملOrthogonal Polynomials on Several Intervals via a Polynomial Mapping
Starting from a sequence {pn{x; no)} of orthogonal polynomials with an orthogonality measure yurj supported on Eo C [—1,1], we construct a new sequence {p„(x;fi)} of orthogonal polynomials on£ = T~1(Eq) (T is a polynomial of degree TV) with an orthogonality measure [i that is related to noIf Eo = [—1,1], then E = T_1([-l,l]) will in general consist of TV intervals. We give explicit formulas rel...
متن کاملTrigonometric Orthogonal Systems and Quadrature Formulae with Maximal Trigonometric Degree of Exactness
Turetzkii [Uchenye Zapiski, Vypusk 1 (149) (1959), 31–55, (English translation in East J. Approx. 11 (2005) 337–359)] considered quadrature rules of interpolatory type with simple nodes, with maximal trigonometric degree of exactness. For that purpose Turetzkii made use of orthogonal trigonometric polynomials of semi–integer degree. Ghizzeti and Ossicini [Quadrature Formulae, Academie-Verlag, B...
متن کاملPositive trigonometric quadrature formulas and quadrature on the unit circle
We give several descriptions of positive quadrature formulas which are exact for trigonometric-, respectively, Laurent polynomials of degree less or equal to n − 1 − m, 0 ≤ m ≤ n − 1. A complete and simple description is obtained with the help of orthogonal polynomials on the unit circle. In particular it is shown that the nodes polynomial can be generated by a simple recurrence relation. As a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 198 شماره
صفحات -
تاریخ انتشار 2008